ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

(a) decreasing pH/increasing acidity; increasing carbon dioxide concentration; increasing temperature; max 2 (b) during respiration pH of tissues falls/temperature increases/CO₂ tension rises; oxygen tension falls since used up in tissues; thus release of oxygen from haemoglobin to tissues is made easier/haemoglobin is on curve B in tissues; converse at alveoli/haemoglobin on curve A and so oxygen uptake is easier; max 3 (c) becomes saturated at very low oxygen levels; can take advantage of low oxygen tensions in its environment; will allow rapid release of oxygen if oxygen tension falls; acts as an oxygen store; max 2 TOTAL 7 **QUESTIONSHEET 2** (a) fetal haemoglobin must onload oxygen; from maternal haemoglobin; across the placenta; thus at pO₂ when maternal haemoglobin is offloading oxygen (in placenta); fetal haemoglobin must be onloading it (in placenta); max 3 (b) (i) erosion/reduction of tissue layers in placenta/between maternal and fetal blood; increase in maternal blood supply to placenta giving larger exchange surface area; foramen ovale/hole in wall from right atrium to left atrium (allowing rapid shunting of oxygenated blood from right to left side of fetal heart); ductus arteriosus/shunt from pulmonary arch to aortic arch (allowing direct passage of oxygenated blood from right side of heart to aorta); max 2 has greater affinity for oxygen than adult haemoglobin; higher oxygen tensions in atmosphere than placenta; thus in air would be unable to unload oxygen to tissues; max 2 TOTAL 7 **QUESTIONSHEET 3** (a) A = aorta; B = hepatic portal vein; C = (anterior) mesenteric/intestinal artery; D = renal artery; 7 E = renal vein; F = hepatic vein; G = posterior/inferior vena cava;(b) (i) B would contain a higher concentration of absorbed food substances than C; higher concentration of glucose; higher concentration of amino acids/other valid example; max 2 B would have a higher glucose concentration than F (since glucose stored as glycogen in liver); B would have a higher amino acid content than F (since extra amino acids deaminated in liver); F would a higher urea concentration than B (due to deamination); max 2 (iii) D would have a higher urea concentration than E (since urea is excreted);

TOTAL 13

2

D would have a higher uric acid/ammonia concentration than E (due to excretion);

ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

(a) $A = left$ atrium; $B = left$ ventricle; $C = right$ ventricle; $D = right$ atrium;	4		
 (b) 1: aortic arch + away; 2: pulmonary arch + away; 3: vena cava + to; 4: pulmonary vein + to; 	4		
	•		
(c) (i) when closed prevent backflow from ventricles during (ventricular) systole/contraction; open to allow blood flow from atria to ventricles during diastole/atrial systole;	2		
(ii) when closed prevent backflow from arches to ventricles during ventricular relaxation/diastole;open to allow blood into arches during ventricular contraction/systole;	2		
(iii) T is a papillary muscle which opens the valve/prevents the valve from inverting;S is a tendon that attaches the valve flap to the muscle;	2		
Т	OTAL 14		
QUESTIONSHEET 5			
(a) (i) it will contract and relax (rhythmically) of its own accord/without any nervous system imput;	1		
(ii) A = sino-atrial node/pacemaker; B = atrio-ventricular node;			
C = bundle of His/ventricular bundles;			
D = Purkinjé/Purkyne fibers/conduction fibers;	4		
(b) (i) sinoatrial node generates impulses in right atrium; and they have to pass across to the left atrium;	2		
(ii) impulses can only get to the ventricles via the atrioventricular node; this delays the passage of the impulse/has a 0.1 second delay/has high electrical resistance which causes delay.	ay; 2		
(iii) because Purkyne fibers leave the bundles at the apex to branch through the ventricle walls /impulses are carried to the apex in the bundle of His;	1		
(c) stimulation by the sympathetic nervous system increases activity (of heart muscle); stimulation of parasympathetic nervous system decreases activity;			
or (regulation by autonomic nervous system = 1 mark only) stimulation by adrenaline increases activity;	max 2		

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

(a) (i)	plasma (minus plasma proteins); white blood cells/named example;	2	
(ii)	plasma proteins; red blood cells;	2	
(iii)	Any four of: oxygen/glucose/amino acids/lipids or named example/salts/vitamins/hormones or named example/any other example;;;;	4	
(b) (i)	lymph is the fluid formed from the arterial end of the capillaries/that drains back into the venous end of the capit when lymph is bathing the cells/exchanging metabolites with the cells it is called tissue fluid;	illaries;	
(ii)	blood pressure at arterial end of capillary bed forces lymph out through capillary walls; solute potential/osmotic pressure exerted by plasma proteins tends to draw water back into the blood; but blood pressure is higher than osmotic pressure and so more fluid leaves blood than returns; water/glucose/amino acids can leave the capillaries but proteins cannot/ref to differentially permeable capillary	wall; max 3	
(iii)	blood pressure at venous end of capillary bed has fallen; now less than the osmotic pressure of the plasma proteins/solute potential; thus osmotic pressure now draws back lymph into the capillaries/venous end; some lymph drained back via lymph ducts/thoracic duct;	max 3	
	тот	FAL 16	
QUES	STIONSHEET 7		
(a) (i)	net blood pressure forcing fluid out = $4.4 - 1.1 = 3.3$ kPa; net solute pressure drawing fluid back in = $3.3 - 1.2 = 2.1$ kPa; thus more fluid leaves than is drawn back;	3	
(ii)	net blood pressure forcing fluid out = $1.7 - 1.1 = 0.6$ kPa; net solute potential drawing fluid back in = $3.3 - 1.2 = 2.1$ kPa; thus more fluid drawn back than leaves;	3	
(iii)	there is more protein in the blood since it is retained by the differentially permeable capillary wall;	1	
this and	of plasma proteins in urine will lower solute potential of blood; enhances lymph formation at arterial end of capillary bed; reduces return of lymph at venous end;		
thus lymph accumulates in the tissues/oedema; max 3			

AS 4

TRANSPORT IN ANIMALS

ANSWERS & MARK SCHEMES

QUESTIONSHEET 8

(a) Curve 1: myoglobin;

Curve 2: fetal;

Curve 3: normal haemoglobin;

3

(b) (i) fetal haemoglobin has greater affinity for oxygen than maternal haemoglobin; at any partial pressure of oxygen fetal haemoglobin will become more saturated than maternal haemoglobin/ensures oxygen passes from mother to fetus;

2

(ii) acts as an oxygen store/will only release its oxygen when partal pressure in tissues/muscles very low; e.g. in sudden exercise/emergency;

2

TOTAL 7

QUESTIONSHEET 9

(a) A: aorta/aortic arch;

B: pulmonary artery/arch;

C: septum;

D: posterior/inferior vena cava;

E: right ventricle;

F: left ventricle:

6

(b) atria contract/atrial systole occurs;

forces blood into ventricles;

semilunar valves (in veins) prevent back flow;

ventricles contract/ventricular systole occurs;

forces blood into aorta/pulmonary artery;

atrio-ventricular valves shut preventing back flow into atria;

atria and ventricles then relax so heart fills with blood;

semilunar valves (in arches) are closed at this stage;

max 5

TOTAL 11

QUESTIONSHEET 10

(a) smooth endothelium to reduce resistance to blood flow;

elastic fibres to allow blood surge/withstand high pressures;

elastic fibres to provide damping effect/smooth flow;

smooth muscle to enable vasoconstriction/vasodilation;

max 2

(b) (i) blood is composed of plasma and cells;

tissue fluid formed from plasma;

tissue fluid does not contain red blood cells/has no/very little proteins;

max 2

(ii) fetal haemoglobin has higher oxygen affinity;

oxygen dissociation curve lies to the left of the maternal curve;

2

ANSWERS & MARK SCHEMES

QUESTIONSHEET 11

(a) by diffusion;

by active/facilitated transport; by cytoplasmic streaming/cyclosis;

3

(b)

Chemical	Origin to destination
Urea	liver to kidney;
Insulin	pancreas to liver;
Alcohol	stomach to liver; small intestine to liver;
ADH	posterior pituitary to kidney;
glucose	small intestine to liver; stomach to liver; liver to all tissues;
FSH	anterior pituitary to ovaries;

9

(c) released (to blood) from red bone marrow;

carried suspended in blood/plasma;

escapes/passes through capillary walls/via fenestrations in capillary walls/ref diapedesis;

aided by histamine making capillaries more 'leaky';

move by amoeboid action through tissues;

attracted to site of infection by chemotaxis;

max 3

ANSWERS & MARK SCHEMES

QUESTIONSHEET 12

(a) (i) A = endothelium/simple squamous epithelium/pavement epithelium;

B = smooth muscle; elastic tissue;

3

(ii) contains elastic tissue to absorb pulse/energy of pulse/withstand high pressure;

contains much (smooth) muscle to withstand high blood pressure/allow vasoconstriction (in smaller arteries); narrow lumen to maintain high pressure;

smooth/non-stickable endothelium so blood flows past easily/little friction;

max 3

(b) (i) vein has a wider/wide lumen;

vein contains less smooth muscle;

vein contains little/no elastic tissue;

vein usually contains valves;

4

(ii) blood is at much lower pressure in veins;

so less need for (smooth) muscle/elastic tissue;

no pulse and so no need for elastic tissue;

valves prevent backflow of blood (due to gravity effects/contraction of atria);

wide lumen allows lower pressure;

max 3

(c) microscopic in size;

smallest capillaries are about 7µm in diameter;

lined by endothelium/simple squamous epithelium/pavement epithelium;

ref to gaps/fenestrations in epithelium;

no muscle/only a very small amount of muscle;

max 3

TOTAL 16

QUESTIONSHEET 13

(a) (i) A = lymphocyte; B = neutrophil; C = monocyte;

3

(ii)	Function	White cells
	production of antibodies	lymphocytes;
	phagocytosis of bacteria	neutrophils; monocytes;
	secretion of histamine, serotonin, heparin	basophils;
	phagocytosis of antigen-antibody debris	eosinophils;

-

(b) released from lymph nodes into lymph/blood(supply of lymph node);

 $passes\ through\ lymphatic\ system/vessels\ to\ join\ blood\ stream;$

near heart/via thoracic duct/into (left) subclavian vein;

carried in blood to site of infection;

released to tissues through 'leaky' capillary walls/fenestrations;

(Reject diapedesis for lymphocytes)

max 3

ANSWERS & MARK SCHEMES

QUESTIONSHEET 14

less oxygen/lower oxygen tension at higher altitude/oxygen tension falls as altitude increases; more red cells present means more haemoglobin is available; and so more oxygen can be picked up/transported/efficiency of oxygen transport is increased; ref to low pO₂ stimulates erythropoietin secretion; erythropoietin stimulates red cell formation; max 3 (ii) all the same sex; different sexes have different red cell counts; 2 all the same age group/no children; different age groups have different counts/children have different counts; 2 all healthy; illness can alter the red cell count; 2 (could also have: same ethnic origin; counts differ in different races;

TOTAL 9

QUESTIONSHEET 15

(a) lower oxygen tension/less oxygen available;

similar diets; diet affects red cell count; allow any other valid suggestions)

at high altitude/up mountains;

llama haemoglobin can onload oxygen more efficiently/at lower oxygen tensions than humans can; yet still release it to the respiring tissues effectively;

max 3

(b) (i) lower oxygen tension stimulates kidneys to release <u>more</u> renal erythropoietic factor;

thus more erythropoietin formed;

thus red cell production increases/red cell production becomes faster than red cell destruction(recycling); but takes several weeks before an appreciable rise is seen/no appreciable effect for at least three weeks;

max 3

(ii) renal dialysis patients have (severe kidney) disease;

fail to produce enough renal erythropoietic factor;

(iii) plasma proteins are made in the liver;

not enough plasma proteins/erythropoietin precursor formed by diseased liver;

2

2